Skip to main content
\(\def\R{{\mathbb R}} \def\C{{\mathbb C}} \def\Q{{\mathbb Q}} \def\Z{{\mathbb Z}} \def\N{{\mathbb N}} \def\vec#1{\mathbf #1} \newcommand{\adj}{\mathop{\mathrm{adj}}} \newcommand{\diag}{\mathop{\mathrm{diag}}} \newcommand{\proj}{\mathop{\mathrm{proj}}} \newcommand{\Span}{\mathop{\mathrm{span}}} \newcommand{\sgn}{\mathop{\mathrm{sgn}}} \newcommand{\tr}{\mathop{\mathrm{tr}}} \newcommand{\rowint}[2]{R_{#1} \leftrightarrow R_{#2}} \newcommand{\rowmul}[2]{R_{#1}\gets {#2}R_{#1}} \newcommand{\rowadd}[3]{R_{#1}\gets R_{#1}+#2R_{#3}} \newcommand{\rowsub}[3]{R_{#1}\gets R_{#1}-#2R_{#3}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)
Manitoba linear algebra
Michael Doob
Contents
Prev
Up
Next
Contents
Prev
Up
Next
Title Page
1
Systems of Linear Equations
2
Matrix Theory
3
The Determinant
4
Vectors in Euclidean \(n\) space
5
Eigenvalues and eigenvectors
6
Linear transformations
7
Additional Topics
Authored in PreTeXt
Manitoba linear algebra
Michael Doob
Department of Mathematics
The University of Manitoba
Michael_Doob@UManitoba.ca